terça-feira, 30 de outubro de 2012

Compactação do DNA


Cromatina é o conteúdo interno do núcleo da célula que não está em divisão, sendo possível a sua observação à microscopia óptica. Numa célula eucariótica, quase todo o DNA está compactado na cromatina. O DNA é "empacotado" na cromatina para diminuir o tamanho da molécula (de DNA), e para permitir maior controle por parte da célula de tais genes. Grande parte da cromatina é localizada na periferia do núcleo, possivelmente pelo fato de uma das principais proteínas associadas com a heterocromatina ligar-se a uma proteína da membrana nuclear interna. A cromatina é formada a partir da molécula de DNA de dupla hélice complexada com proteínas básicas - as histonas - e proteínas ácidas não-histônicas. As histonas são proteínas simples, solúveis em água. Nos cromossomos humanos foram detectadas cinco classes de histonas, as quais são identificadas modernamente pelas notações H1, H2A, H2B, H3, H4. As quatro últimas ocorrem nos cromossomos em proporções semelhantes. As histonas H2A e H2B possuem peso molecular bem inferior ao da histona H1. Ambas são consideradas ricas em lisinas (aminoácidos). As histonas H3 e H4 são ricas em arginina(aminoácidos codificados pelo código genético, sendo portanto um dos componentes das proteínas dos seres vivos). As proteínas não-histônicas dos cromossomos são classificadas, de um modo geral, em proteínas ácidas, as quais podem ser removidas por soluções alcalinas fracas, proteínas residuais, que ficam remanescentes depois da extração das histonas, e enzimas. As proteínas histônicas atuam na formação do nucleossomo (estrutura fundamental no acondicionamento da fibra de cromatina), além de manter sua seqüência de aminoácidos H2A, H2B, H3, H4 por gerações, mesmo entre espécies diferentes. As proteínas não-histônicas proporcionam condições para que haja associações entre histonas e cromatinas, impedindo repulsões eletrostáticas entre as proteínas básicas. Os cromossomos são visíveis como estruturas distintas apenas nas células em divisão. 
            Existem quatro níveis de compactação da cromatina:
1) Estrutura primária - Associação da dupla hélice do DNA com um grupo específico de histonas. Duas cópias de cada uma das quatro histonas (H2A, H2B, H3, H4) constituem um octâmero, em torno do qual um segmento de dupla hélice de DNA se enrola, como uma linha em torno de um carretel. O octâmero circundado por duas voltas de DNA constitui um nucleossomo. Cerca de 140 bases de DNA estão associadas a cada centro de histonas. Após um segmento de DNA curto (20 a 60 bases), forma-se o centro seguinte de complexo de DNA, e assim por diante, conferindo à cromatina a aparência de contas num cordão. Este primeiro nível de compactação reduz o tamanho da molécula de DNA em 6 a 7 vezes. 
2) Solenóides - A histona H1 tem papel na organização da cromatina ocupando lugar na região entre os nucleossomos, forçando o material a outro tipo de compactação, em estruturas secundárias helicóides, denominadas solenóides. O solenóide corresponde à compactação de 6 a 7 nucleossomos. Essa nova fibra é a unidade fundamental da organização da cromatina. O solenóide é capaz de condensar aproximadamente 1200 bases de DNA.
3) Alças - Com a formação do solenóide, tem lugar a ação de proteínas não-histônicas, que formam estruturas em alças ou domínios. As alças podem ser o início de espessamentos parecidos com nós, denominados cromômeros. À medida que os cromossomos se condensam mais, os cromômeros adjacentes fundem-se em estruturas maiores, que depois se tornam às bandas cromossômicas.
4) Cromossomos - Encontramos essas formas na metáfase, quando há a maior condensação da cromatina. É o enrolamento final, do qual participa a topoisomerase II.


Conhecem-se dois tipos de cromatina:
- Eucromatina, que consiste em DNA ativo, ou seja, que pode-se expressar como proteínas e enzimas.
- Heterocromatina, que consiste em DNA inativo e que parece ter funções estruturais durante o ciclo celular. Podem ainda distinguir-se dois tipos de heterocromatina:
- Heterocromatina constitutiva, que nunca se expressa como proteínas e que se encontra localizada à volta do centrómero(contem geralmente sequências repetitivas);
- Heterocromatina facultativa, que, por vezes, é transcrita em outros tipos celulares, consequentemente a sua quantidade varia dependendo da atividade transcricional da célula. Apresenta condensada na interfase.

Fonte:



Postado por: Ana Carolina Biscaia, Dayane Soares e Karina Brandes

quinta-feira, 25 de outubro de 2012

O Controle do Ciclo Celular e a Origem do Câncer
Como sabemos, a interfase é um período de intensa atividade metabólica e de maior duração do ciclo celular. Células nervosas e musculares, que não se dividem por mitose, mantêm-se permanentemente na interfase, estacionadas no período chamado G0.
Fonte:http://www.qieducacao.com/2011/05/ciclo-celular.html
Nas células que se dividem ativamente, a interfase é seguida da mitose, culminando na citocinese. Sabe-se que a passagem de uma fase para outra é controlada por fatores de regulação - de modo geral protéicos – que atuam nos chamados pontos de checagem do ciclo celular. Dentre essas proteínas, se destacam as ciclinas, que controlam a passagem da fase G1 para a fase S e da G2 para a mitose.
Se em algumas dessas fases houver alguma anomalia, por exemplo, algum dano no DNA, o ciclo é interrompido até que o defeito seja reparado e o ciclo celular possa continuar. Caso contrário, a célula é conduzida à apoptose (morte celular programada).
Outro ponto de checagem é o da mitose, promovendo a distribuição correta dos cromossomos pelas células-filhas. Perceba que o ciclo celular é perfeitamente regulado, está sob controle de diversos genes e o resultado é a produção e diferenciação das células componentes dos diferentes tecidos do organismo. Os pontos de checagem correspondem, assim, a mecanismos que impedem a formação de células anômalas.

A origem das células cancerosas está associada a anomalias na regulação do ciclo celular e à perda de controle da mitose. Alterações do funcionamento de genes controladores do ciclo celular, em decorrência de mutações, são relacionados ao surgimento de um câncer. Duas classes de genes, os proto-onco-genes e os genes supressores de tumor são os mais diretamente relacionados à regulação do ciclo celular. Os proto-oncogenes são responsáveis pela produção de proteínas que atuam na estimulação do ciclo celular, enquanto os genes supressores de tumor são responsáveis pela produção de proteínas que atuam inibindo o ciclo celular.
Dizendo de outro modo:
Os proto-oncogenes, quando ativos, estimulam a ocorrência de divisão celular e os genes supressores de tumor, quando ativos, inibem a ocorrência de divisão celular. O equilíbrio na atuação desses dois grupos de genes resulta no perfeito funcionamento do ciclo celular.
Mutações nos proto-oncogenes os transformam em oncogenes ( genes causadores de câncer). As que afetam os genes supressores de tumor perturbam o sistema inibidor e o ciclo celular fica desregulado, promovendo a ocorrência desordenada de divisões celulares e o surgimento de células cancerosas, que possuem as seguintes características:
  • são indiferenciadas, não contribuindo para a formação natural dos tecidos,
  • seus núcleos são volumosos e com um número anormal de cromossomos;
  • empilham-se sobre a outras em várias camadas, originando um aglomerado de células que forma um tumor. Se ficar restrito ao local de origem e for encapsulado, diz-se que o tumor é benigno, podendo ser removido;
  • nos tumores malignos, ocorre a metástase, ou seja, as células cancerosas abandonam o local de origem, espalham-se por via sangüínea ou linfática, e invadem outros órgãos. Esse processo é acompanhado por uma angiogênese, que é a formação de inúmeros vasos sanguíneos responsáveis pela nutrição das células cancerosas.
Outra ocorrência envolvendo alterações do ciclo celular é relativa aos telômeros, que são segmentos de moléculas de DNA com repetições de bases que atuam como “capas protetoras” da extremidade dos cromossomos.
Em células humanas normais, a cada ciclo celular os telômeros são progressivamente encurtados, as extremidades dos cromossomos ficam cada vez mais curtas, até atingir um limite mínimo de tamanho incompatível com a vida da célula, paralisando-se as divisões celulares e sinalizando o fim da vida da célula.
Em células cancerosas esse limite é transposto graças a atividade de uma enzima , a telomerase, que atua na reposição constante dos telômeros, mantendo-os sempre com o tamanho original, permitindo assim, que as células se dividam continuamente e se tornem praticamente “imortais”.

 Fonte: http://www.sobiologia.com.br/conteudos/Citologia2/nucleo11.php

Postado por: Ana Carolina Moreira